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Abstract: Starling from methyl-olefin (5), the total synthesis of (+)-stemodinone (2) 
was achieved through an efficient ring-exchange reaction to control the stereochemistry 
of C 10 followed by A-ring construction and the introduction of three methyl groups. 
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Stemodia maritima L. (Scrophulariaceae) has been used as a folk medicine in the Caribbean Islands for the 

treatment of venereal disease. Stemodin (1) and stemodinone (2), typical stemodane-type diterpenes that have 

been isolated as metabolites from this plant, 1 possess a unique tetracyclic skeleton: a trans decalin system (A/B- 

ring) fused to a bicyclo[3.2, l]octane system (C/D-ring), which is the same planar structure as aphidicolin (3), a 

potential antitumor and antiviral agent. Because of the remarkable biological activities of 3, 2 considerable 

effort has been directed toward synthesizing these diterpenes. 3 One of the most important challenges in the 

synthesis of these diterpenes is the construction of two adjacent quaternary carbon centers (C9 and C 10). We 

previously developed two methods for controlling the stereochemistry at C94, 5 and successfully synthesized 3 

starting from tficyclic ketone 4. 6 in this paper, we describe a novel total synthesis of (+)-2 starting fi'om 

tricyclic methyl-olefin 5 which was selectively obtained from the same starting material as 45b via a tricyclic 

dienol ether 6. 
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Since the stereochemistry of C9 has been established, our next goal was the proper construction of CI0. 

Focusing on the structure of the dienol ether 6, we required a method to introduce the carbon moiety ("Cn") to 6 

fi'om the more hindered oc-side (e.g., A---~B) (Scheme !). Therefore, we devised the following new ring- 

exchange strategy. 7 Methyl-olefin A was converted to dienol-ether D via enone C, and subsequent Diels- 

Alder reaction of D with a suitable dienophile (CI=C 2) from the less hindered 13 side led to the 

bicyclo[2.2.2]octanone derivative E. Selective cleavage of the original ring gave B with a complete control of 

stereochemistry. This type of ring-exchange reaction should be useful for controlling the stereochemistry at 
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C I 0 in stemodanes and may also be applicable to the synthesis of other natural products. 
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Scheme 1 

Following the strategy described in Scheme I, we worked toward the stereospecific construction of CI0. 

Methyl-olefin 5 gave enone 7 by allylic oxidation. 8 Enone 7 was converted to the dienol ether 6, which was 

subjected to Diels-Alder reaction with 3-butyn-2-one followed by desilylation of the resulting silyl enol ether to 

give the bicyclic enedione 8. # The structure of 8 was confirmed by X-ray crystallographic analysis, which 

revealed that the new ring was built from the less hindered 15-side, as expected. 9 Regio- and chemoselective 

Baeyer-Villiger oxidation of 8 afforded the enone lactone 9 in good yield. The bicyclic 7-membered lactone 9 

was easily isomerized in excellent yield to the fused 5-membered iactone 10 # by a Pd(0)-catalyzed lactone 

migration reaction 7 (Scheme 2). 
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Scheme 2 Reagents and conditions i, CrO3, 3,5-dimethylpyrazole, CH2CI2,-20 °C; ii, LDA, TMSC1, 
-78-o0°C; iii, 3-butyn-2-one, neat, r.t., then n-Bu4NF; iv, m-CPBA, NaH2PO 4, toluene, r.t.; v, Pd(Ph3P)4, 
n-Bu3P, MeCN, r.t. 

Since CI0 was constructed properly, we turned our efforts to constructing the A-ring and subsequent 

completion of the total synthesis. Hydrogenolysis of 10 gave the keto-acid 11 as a diastereomeric mixtu,-e 

with respect to the acetyl group (ca. trans/cis = 5.3/1). 10 Esterification with TMSCHN2 in MeOH 11 gave 

keto-ester 12. Base-promoted cyclizafion (Nail in the presence of a catalytic amount of MeOH in benzene) 

between the ester group derived from the original B-ring and the acetyl group introduced by Diels-Alder reaction 

followed by acidic workup gave only A/B-trans triketone 13,12 which was converted into the methoxy-enone 

14 (69%) with a regioisomer (5%) under acidic equilibrium conditions. 13 One-pot introduction of two methyl 

groups to 14 was achieved by treatment with MeLi (10 equiv.) in the presence of lithium perchlorate (5 

equiv. ), 14 and this was followed by aqueous acidic workup to give a mixture of enone 15 # (59 %) and its CI3- 

epimer (19 %)15 which were then separated. Finally, conjugate addition of a methyl group (Me2CuLi- 

TMSCI-H MPA in Et20) 16.17 to enone 15 resulted in the total synthesis of (+)-stemodinone (2) [rap 203-205 qC 
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(lit. 3a 199-201 ~C)] in 25 % yield (85 % based on the consumed starting enone 15). 18 The Ill- and t3C-NMR 

spectra of the synthetic 2 were identical to those of an authentic sample (Scheme 3). Since 2 has previously 

been converted to 1,3a our synthesis of 2 also represents a total synthesis of (+)-stemodin 1. 
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Scheme 3 Reagents and conditions i, H2, Pd-C, MeOH-THF (1:1); ii, TMSCHN2, MeOH; iii, Nail, 
MeOH, benzene; iv, 5 % HCI-MeOH solution; v, MeLi, LiCIO4, Et20 then 10 % HCI; vi, Me2CuLi, TMSCI, 
HMPA, Et20, then satd. NaHCO3. 
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